⭐️
# 題目敘述
Given an array of functions [f1, f2, f3, ..., fn]
, return a new function fn
that is the function composition of the array of functions.
The function composition of [f(x), g(x), h(x)]
is fn(x) = f(g(h(x)))
.
The function composition of an empty list of functions is the identity function f(x) = x
.
You may assume each function in the array accepts one integer as input and returns one integer as output.
# Example 1
Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4
Output: 65
Explanation:
Evaluating from right to left …
Starting with x = 4.
2 * (4) = 8
(8) * (8) = 64
(64) + 1 = 65
# Example 2
Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1
Output: 1000
Explanation:
Evaluating from right to left …
10 * (1) = 10
10 * (10) = 100
10 * (100) = 1000
# Example 3
Input: functions = [], x = 42
Output: 42
Explanation:
The composition of zero functions is the identity function
# Solution
/** | |
* @param {Function[]} functions | |
* @return {Function} | |
*/ | |
var compose = function(functions) { | |
return function(x) { | |
functions.reverse().forEach(fn => x = fn(x)); | |
return x; | |
} | |
}; | |
/** | |
* const fn = compose([x => x + 1, x => 2 * x]) | |
* fn(4) // 9 | |
*/ |
type F = (x: number) => number; | |
function compose(functions: F[]): F { | |
return function(x) { | |
functions.reverse().forEach(fn => x = fn(x)); | |
return x; | |
} | |
}; | |
/** | |
* const fn = compose([x => x + 1, x => 2 * x]) | |
* fn(4) // 9 | |
*/ |